
fax id: 3454

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 2, 1998

Designing a USB Keyboard and PS/2 ® Mouse Combination
Device Using the Cypress Semiconductor CY7C63413 USB

Microcontroller

Introduction
The Universal Serial Bus (USB) is an industry standard serial
interface designed to connect computers to their peripherals.
Devices such as keyboards, mice, joysticks, scanners, print-
ers, and others can all benefit from the connectivity provided
by USB. This application note describes how to design a USB
keyboard and PS/2 mouse combination device using the
Cypress Semiconductor single-chip CY7C63413 USB micro-
controller. The PS/2 mouse is a widely used, low-cost pointing
device found in computers today. By implementing a legacy
PS/2 interface on the CY7C63413 USB microcontroller, orig-
inally targeted for USB keyboards, we provide a simple,
low-cost solution for keyboard and mouse combination devic-
es. This document starts with the basic operations of a USB
keyboard and PS/2 mouse transfer protocol, followed by an
introduction to the CY7C63413 USB controller. A schematic
of the USB keyboard and PS/2 mouse combination device
with its connection details can be found in the Hardware Im-
plementation Section.

The software section of this application note describes the
architecture of the firmware required to implement the key-
board and PS/2 mouse interface functions. Several sample
code segments are included to assist in the explanation. The
source and binary code of the demonstration keyboard firm-
ware is available free of charge from Cypress Semiconductor.
Please contact your local Cypress sales office for details.

Since this design is an extension of the USB keyboard design,
it is assumed that the reader is familiar with the USB keyboard
implementation. Therefore, this application note will only fo-
cus on other relevant issues such as PS/2 interface imple-
mentation and keyboard/mouse integration. If the reader is
not familiar with the USB keyboard design, the application
note titled “Designing a USB Keyboard with the Cypress
Semiconductor CY7C63413 USB Microcontroller” is highly
recommended. The above application note is available at the
Cypress web site at www.cypress.com.

This application note also assumes that the reader is familiar
with the CY7C63413 USB controller and the Universal Serial
Bus. The CY7C63413 data sheet is available from the
Cypress web site. USB documentation can be found at the
USB Implementers Forum web site at www.usb.org/.

USB Keyboard Basics
Key Switches and Scan Matrix

A PS/2 keyboard has between 101 and 104 keys that are
uniquely positioned in a scan matrix. The scan matrix con-
sists of M rows and N columns, all of which are electrically
isolated from each other. Typically, the number of rows (M) is
no greater than 8, and the number of columns (N) is no great-
er than 20. Each key sits over two isolated contacts of its

corresponding row and column in the scan matrix. When a
key is pressed, the two contacts are shorted together, and the
row and column of the key are electrically connected.

USB Keyboard Controller

A single CY7C63413 USB microcontroller is used to perform
a variety of tasks, all of which help to cut down on the overall
system overhead. Besides USB interface functions, the es-
sential task of the microcontroller is to monitor the keys and
report to the host computer whenever a key is pressed or
released. The microcontroller writes a scan pattern out to the
column lines consisting of all 1s and one 0, which is shifted
through each column. The result is then read at the row lines.
If a 0 is propagated to a row line, then the key at the intersec-
tion of that column and row has been pressed. See Figure 1.

Figure 1. Scan Matrix with Key 1,1 Pressed

After scanning the key matrix and determining which key is
pressed or released, the CY7C63413 microcontroller forms
the keyboard data report and sends it to the host through a
USB endpoint. For detailed implementation and operation of
the USB keyboard, please refer to the application note “De-
signing a USB Keyboard with the Cypress Semiconductor
CY7C63413 USB Microcontroller.”

PS/2 Mouse Basics
The IBM PS/2 mouse is a pointing device that uses a rubber
track ball and two encoders to indicate X and Y movement to
the host system. It also typically has two push-button switch-
es. The mouse is connected to the host system via a 2.7
meter, shielded, 4-conductor cable, and a 6-pin connector.
The four signals are: Data, Clock, +5Vdc and Ground. The
signals and their pin assignments on the PS/2 connector are
shown in the schematic in Figure 6.

Row 0

Row 1

Row 2

Row 3

C
ol

um
n

 0

C
ol

um
n

 1

C
ol

um
n

 2

C
ol

um
n

 3

Pattern 0

Pattern 1

Pattern 2

Pattern 3

0 1

0

0

0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

R
es

ul
t

0

R
e

su
lt

1

R
es

ul
t 2

R
es

ul
t 3

Key
Pressed

Designing a USB Keyboard and PS/2 Mouse Combination Device

2

Operation Modes

The PS/2 mouse can operate in four different modes, shown
below:

• Reset Mode : in this mode a self-test is initiated during
power-on or by a Reset command. Upon successful com-
pletion of the self-test, a completion code (AAh) and an ID
code (00h) are transmitted to the host system. Any com-
mands sent before the transmission of the completion code
and the ID byte are ignored. If the self-test fails, the mouse
responds with a error code (FCh) and an ID code (00h),
after which the mouse is disabled and awaits further com-
mands from the host system.

• Stream Mode : in this mode a data report is only transmit-
ted to the host system if a button is pressed or released or
if at least one count of movement has been detected. The
maximum rate of transfer is the programmed sample rate.

• Remote Mode : also known as “polling” mode. In this mode,
a data report is transmitted only in response to a Read Data
command.

• Wrap Mode : in this mode, any byte of data sent by the host
system, except hexadecimal values ECh and FFh, is re-
turned by the mouse.

PS/2 Mouse Protocol and Commands

The PS/2 mouse communicates with the host system through
a defined protocol consisting of commands and responses.
The ACK byte (FAh) is always the first response to any valid
input received from the host system, except for Resend com-
mand and in Wrap mode. Table 1 shows a list of all the valid
commands.

Only the mouse commands that are used in this design are
discussed below. For complete description of the PS/2 mouse
commands and operation, please see “IBM Personal Sys-
tem/2 Mouse Technical Reference.” from IBM (Document
Number S68X-2229-00).

The following are the commands used by this design and their
brief descriptions:

• Reset : this command causes the mouse to enter the reset
mode and do an internal self-test.

• Resend : any time the mouse receives an invalid command,
it returns a Resend command to the host system. The host
system, in turn, sends this command when it detects any
error in any transmission from the mouse. When the mouse
receives a Resend command, it retransmits the last packet
of data sent.

• Set Stream Mode : this command sets the Stream mode.

• Enable : this command is used in the Stream mode to begin
transmission.

• Disable : this command is used in the Stream mode to stop
transmissions initiated by the mouse. The mouse responds
to all other commands while disabled. If the mouse is in
the Stream mode, it must be disabled before sending it any
command that requires a response.

• Read Data : this command requests that all data defined
in the data packet format be transmitted. This command is
executed in either remote or stream mode. The data is
transmitted even if there has been no movement since the
last report or the switch status is unchanged.

Mouse Data Report

In the Stream mode, a data report is sent at the end of a
sample interval if there has been a button event or mouse
movement. The sampling rate is, by default, 100 reports per
second, but it can be changed by the Set Sampling Rate com-
mand. On the other hand, in the Remote (or polling) mode, a
data report is sent in response to a Read Data command.

The data report is three bytes long and its format is shown in
Table 2.

Data Transmission

Data transmission between the PS/2 mouse and the host sys-
tem is carried out by 2 signals: Clock and Data. The Clock
signal is used to clock serial data. The mouse generates the
clocking signal when sending data to or receiving data from
the host system. The host system requests the mouse to re-
ceive host data output by forcing the Data line LOW and al-
lowing Clock to go HIGH. Figure 2 illustrates a PS/2 data
frame containing a single byte of data.

Table 1. PS/2 Mouse Commands

Hex Code Command

FF Reset

FE Resend

F6 Set Default

F5 Disable

F4 Enable

F3 Set Sampling Rate

F2 Read Device Type

F0 Set Remote Mode

EE Set Wrap Mode

EC Reset Wrap Mode

EB Read Data

EA Set Stream Mode

E9 Status Request

E8 Set Resolution

E7 Set Scaling 2:1

E6 Reset Scaling

Table 2. PS/2 Mouse Data Report Format

Byte Bit Description

1 7 Y Data Overflow 1= Overflow

6 X Data Overflow 1= Overflow

5 Y Data Sign 1= Negative

4 X Data Sign 1= Negative

3 Reserved

2 Reserved

1 Right Button Status 1= Pressed

0 Left Button Status 1 = Pressed

2 7–0 X Data

3 7–0 Y Data

Designing a USB Keyboard and PS/2 Mouse Combination Device

3

Communication is bidirectional using the Clock and Data sig-
nal lines. The signal for each of these lines comes from open
collector devices, allowing either the mouse or the host sys-
tem to drive a line LOW. During a non-transmission state, both
Clock and Data lines are held HIGH. For detailed information
on signaling protocol for data transmission using Clock and
Data lines, please refer to “IBM Personal System/2 Mouse
Technical Reference.”

Introduction to CY7C63413
The CY7C63413 is a high performance 8-bit RISC microcon-
troller with an integrated USB Serial Interface Engine (SIE).
The architecture implements 37 instructions that are opti-
mized for USB applications. The CY7C63413 has a built-in
clock oscillator and timers, as well as general purpose I/O
lines that can be configured as inputs with internal pull-ups,
open-drain outputs, or traditional CMOS outputs. High perfor-
mance, low-cost human-interface type computer peripherals
such as a keypad or keyboard can be implemented with a
minimum of external components and firmware effort.

Clock Circuit

The CY7C63413 has a built-in clock oscillator and PLL-based
frequency doubler. This circuit allows a cost-effective 6-MHz
ceramic resonator to be used externally while the on-chip
RISC core runs at 12 MHz.

USB Serial Interface Engine (SIE)

The operation of the SIE is totally transparent to the user. In
the receive mode, USB packet decode and data transfer to

the endpoint FIFO are automatically done by the SIE. The SIE
then generates an interrupt to invoke a service routine after a
packet is unpacked.

In the transmit mode, data transfer from the endpoint and the
assembly of the USB packet are handled automatically by the
SIE.

General Purpose I/O

The CY7C63413 has 32 general purpose I/O lines divided
into 4 ports: Port 0 through Port 3. One such I/O circuit is
shown in Figure 3. Each port (8 bits) can be configured as
inputs with internal pull-ups (7 Kohms), open drain outputs
(high-impedance inputs), or traditional CMOS outputs. The
port configuration is determined according to Table 3 below.

Figure 2. PS/2 Data Frame Format

Data Data
Bit 1Bit 0

. . . . Odd
Parity

Data
Bit 7

Stop Bit (Always = 1)Start Bit (Always = 0)

GPIO
Pin

7 KΩ

ESD

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable C

o
nt

ro
l

C
o

nt
ro

l

to Interrupt
Controller

Q1

Q2

Q3

Internal
Buffer

VCC

Figure 3. One General Purpose I/O Line

Table 3. GPIO Configuration

Port
Configuration

Bits
Pin

Interrupt Bit Driver mode
Interrupt
Polarity

11 X Resistive –

10 0 CMOS
Output

disabled

10 1 CMOS Input disabled

01 X Open Drain –

00 X Open Drain +

Designing a USB Keyboard and PS/2 Mouse Combination Device

4

Ports 0 to 2 offer low current drive with a typical current sink
capability of 7 mA. Port 3 offers a higher current drive, with a
typical current sink of 12 mA which can be used to drive LEDs.

Each General Purpose I/O (GPIO) is capable of generating
an interrupt to the RISC core. Interrupt polarity is selectable
on a per port basis using the GPIO Configuration Register
(see Table 3 above.) Selecting a negative polarity (“–”) will
cause falling edges to trigger an interrupt, while a positive
polarity (“+”) selects rising edges as triggers. The interrupt
triggered by a GPIO line is individually enabled by a dedicated
bit in the Interrupt Enable Register. All GPIO interrupts are
further masked by the Global GPIO Interrupt Enable Bit in the
Global Interrupt Enable Register.

The GPIO Configuration Register is located at I/O address
0x08. The Data Registers are located at I/O addresses 0x00
to 0x03 for Port 0 to Port 3 respectively.

Power-up Mode

The CY7C63413 offers 2 modes of operation after a pow-
er-on-reset (POR) event: suspend-on-reset (typical for a USB
application) and run-on-reset (typical for a non-USB applica-
tion). The suspend-on-reset mode is selected by attaching a
pull-up resistor (100 to 470 KΩ) to VCC on Bit 7 of GPIO Port
3. The run-on-reset mode is selected by attaching a pull-down
resistor (0 to 470 KΩ) to ground on Bit 7 of GPIO Port 3. See
Figure 4. As the USB keyboard and PS/2 mouse combination
device is a USB implementation, the CY7C63413 should be
configured for suspend-on-reset.

Hardware Implementation
Figure 6 is the schematic for a USB keyboard and PS/2
mouse combination device. This schematic is very similar to
the one in the USB keyboard-only design. The major differ-
ence is the addition of the PS/2 mouse Clock and Data signal
lines to the GPIO Port 3 bit 6 and bit 7, respectively.

Port 2 is configured as resistive inputs (7 Kohm pull-ups to
VCC), and are connected to the M rows of the scan matrix (up
to 8 rows are supported). Ports 0, 1, and 3 are configured as
open drain outputs, and are used to connect to the N columns
of the scan matrix, the 3 LEDs (Num Lock, Caps Lock, and
Scroll Lock), and the two PS/2 mouse signals. Since the PS/2
signals occupy two bits of Port 3, we can only support key-
board scan matrices up to 18 columns. Most of the existing
AT-101 or AT-104 type keyboards do not use more than 18
columns. For keyboards that use scan matrices with more
than 18 columns, it is usually possible to relocate the keys
from the columns 19 and greater to unassigned locations on
columns 18 or below. The three LEDs are connected to the
lower three bits of Port 3 as well (for high current drive). For
scan matrices with less then 8 rows or 18 columns, the un-
used port bits should be left unconnected.

The PS/2 signals are connected to the PS/2 mouse through
a 6-pin PS/2 receptacle. +5V and GND are also available on
the receptacle to power the PS/2 mouse. The strap option
pull-up resistor R8 (470 KΩ) selects the Suspend-On-Reset
mode for the USB microcontroller, and the series termination
resistor R7 (100Ω) is used to reduce crosstalk problems over
the PS/2 lines.

During a keyboard scan test where no key is pressed, the row
port data bits will be HIGH since all row lines are internally
pulled up to VCC. When a key is pressed, driving its column
port line LOW (key scan pattern) will cause its row line to go
LOW as well. See Figure 5.

A 6 MHz ceramic resonator is connected to the clock inputs
of the microcontroller. This component should be placed as
close to the microcontroller as possible.

According to the USB specification, the USB D– line of a
low-speed device (1.5 Mbps) should be tied to a voltage
source between 3.0V and 3.6V with a 1.5 KΩ pull-up termina-
tor. The CY7C63413 eliminates the need for a 3.3V regulator
by specifying a 7.5-KΩ resistor connected between the USB
D– line and the nominal 5V VCC. This is compliant with “De-
vice Working Group Review Request 135.”

V C C

Port 3, Bit 7

Rp ullu p
100K to 470K OH M100 to 470 K Ω

Port 3, Bit 7

Rp ul ldown
0 to 470K OHM

Figure 4. (a) Suspend-On-Reset Mode

Figure 4. (b) Run-On-Reset Mode

Figure 5. Row/Column Port Configuration

Row Port Line Column Port Line

Row i Column j

Closed when keyi,j is pressed Driven LOW by the key scan

Designing a USB Keyboard and PS/2 Mouse Combination Device

5

Figure 6. Hardware Implementation - Schematic

Designing a USB Keyboard and PS/2 Mouse Combination Device

6

Firmware Implementation
USB Interface

Like the USB keyboard-only device, the USB keyboard and
PS/2 mouse combination device is also a USB Human Inter-
face Device (HID). All USB HID-class devices follow the same
USB start-up procedure. The procedure is shown in Figure 7.

However, designing a USB HID combination device (key-
board and mouse functions) requires different approaches in
phases such as USB enumeration and data acquisition/trans-
fer. We will discuss these differences in the following sections.
Device Plug-in and Bus Reset phases remain basically the
same for the combination device as for the keyboard-only de-
sign.

Enumeration

A combination device follows the same usual USB enumera-
tion process, where the device responds to the host with a
number of USB descriptors. In this design, the combination
device chooses to transmit both the keyboard and mouse
data reports through a single interface, and over the same
interrupt endpoint (endpoint 1). This means that the HID re-
port descriptor needs to be modified to describe both the key-
board and mouse data reports. All the other USB descriptors
(device, configuration, interface, class, and endpoint descrip-
tors) can remain the same as in the keyboard-only design.

HID Report Descriptor

The HID report descriptor is basically divided into two appli-
cation collections, corresponding to the keyboard and the
mouse collections. To allow the host system to distinguish
different reports arriving over the same interrupt endpoint, a
Report ID tag is added to each of the two reports. The Report
ID value indicates the prefix added to a particular report. For
example, the report descriptor defines a 3-byte mouse report
with a report ID of 02. Therefore, whenever the combination
device needs to send a mouse report in response to an IN
packet on endpoint 1, it will generate a 4-byte data report, in
which the first byte is the report ID 02. The keyboard report is
assigned a report ID of 01.

Example of HID Report Descriptor

Usage Page (Generic Desktop)
Usage (Keyboard)

Collection (Application)
ReportID (0x01)
Usage Page (Key Codes)
Usage Minimum (234)
Usage Maximum (231)
Logical Minimum (0)
Logical Maximum (1)
Report Size (1)
Report Count (8)
Input (Data,Variable,Absolute)

Report Count (1)
Report Size (8)
Input (Constant);reserved byte

Report Count (5);LED report
Report Size (1)
Usage Page (LEDs)
Usage Minimum (1)
Usage Maximum (5)
Output (Data,Variable,Absolute)
Report Count (1)
Report Size (3)
Output (Constant);3-bit padding

Report Count (6)
Report Size (8)
Logical Minimum (0)
Logical Maximum (101)
Usage Page (Key Codes)
Usage Minimum (0)
Usage Maximum (101)
Input (Data, Array);key array(6)

End Collection

Usage Page (Generic Desktop)
Usage (Mouse)
Collection (Application)

ReportID (0x02)
Usage (Pointer)
Collection (Linked)

Usage Page (Buttons)
Usage Minimum (1)
Usage Maximum (3)
Logical Minimum (0)
Logical Maximum (1)
Report Count (3);three buttons
Report Size (1)
Input (Data,Variable,Absolute)
Report Count (1)
Report Size (5)
Input (Constant);5-bit padding

Usage Page (Generic Desktop)
Usage (X)
Usage (Y)
Logical Minimum (-127)
Logical Maximum (127)
Report Size (8);X and Y data
Report Count (2)
Input (Data,Variable,Variable)

End Collection
End Collection

Figure 7. USB Start-Up Procedure

Bus Reset

Enumeration

Data Acquisition/
Transfer

Device Plug-in
(Power On Reset)

Designing a USB Keyboard and PS/2 Mouse Combination Device

7

A more detailed description of HID and all the items used in
an HID report descriptor can be found in the “Device Class
Definition for Human Interface Devices (HID) Revision 1.0.”

Data Acquisition/Transfer

The firmware alternately scans the keyboard scan matrix and
polls the PS/2 mouse to determine whether data reports need
to be sent to the host system. As mentioned earlier, both the
keyboard and mouse data reports are sent to the host using
endpoint 1. When the firmware determines there is a key or
many keys pressed, it sets up the keyboard data report, loads
it into the endpoint 1 FIFO, and enables the endpoint 1 trans-
mission. Then the keyboard data report will be sent when the
next IN packet is received on the endpoint 1 from the host.
The PS/2 mouse follows the same steps to send its data re-
port to the host.

The HID keyboard data report is 8 bytes long, and consists of
one byte of modifiers plus 7 key scan code bytes. Table 4
shows the format of the keyboard report. Usage codes for
each key can be found in Appendix A.3 of the “Device Class
Definition for Human Interface Devices (HID).”

Since the maximum data packet size of an interrupt pipe for
a low-speed USB device is limited to 8 bytes, the device
needs to send the complete report (1-byte report ID plus
8-byte data report) in two interrupt transactions, instead of
only one in the keyboard-only design. In the first interrupt
transaction, a report ID and the first 7 bytes of the data report
are sent in response to a IN token. In the second transaction,
a report ID and the last byte of the data report are sent in
response to the following IN token.

When any LED keys (i.e., Num Lock, Caps Lock, Scroll Lock)
are pressed or released, the host system issues a SETUP
packet with a Set_Report request through the control pipe to
End Point 0, followed by an OUT packet with 2 data bytes. The
first byte corresponds to the report ID and the second byte
indicates which LED should be on or off (see Table 5.)

The HID mouse data report is 3 bytes long (see Table 6). The
firmware polls the PS/2 mouse and obtains the PS/2 mouse
data packet (see Table 2). Then it extracts the button and X,
Y movement information from the PS/2 data packet to com-
pose the HID mouse data report. Different from the keyboard
report, the complete mouse report can be sent in a single
USB interrupt transaction since it is only 4 bytes long (1 byte
of report ID and 3 bytes of mouse data).

The byte order and bit field positions for both the keyboard
and mouse reports are consistent with the Boot Protocol re-
quirements for legacy systems.

PS/2 Interface

State Machine Implementation

The USB keyboard and PS/2 mouse combination device firm-
ware is an extension of the keyboard-only firmware, with the
addition of PS/2 interface code and changes to allow function-
al integration. The PS/2 interface code consists of a number
of subroutines which can be called by the main code to per-
form PS/2 related tasks. In this application note, we will main-
ly discuss the principle of operation and how to utilize these
subroutines to operate a PS/2 mouse. For implementation
details of the subroutines, please refer to the firmware source
code.

The PS/2 mouse interface code is implemented by two state
machines: mouse_int and mouse_machine. The former oper-
ates at the bit/byte transaction level and the latter operates at
the byte/command transaction level. The mouse_int state
machine manages the transmission and reception of data
bytes over the PS/2 bus. Since the PS/2 mouse always drives
the clock signal connected to a GPIO pin, the mouse_int state
machine is driven by GPIO interrupts generated from the fall-
ing edge of the PS/2 clock. In the GPIO interrupt service rou-
tine, the microcontroller will either read from or write to the
PS/2 data line, depending on whether it is receiving data from
or sending data to the PS/2 mouse.

The states of mouse_int corresponds to bit states of a PS/2
byte transmission or reception (i.e., start bit, data bits, parity
and stop bit). The mouse_int is initiated either by a byte trans-
mission request from the high-level state machine,
mouse_machine, or by the start of a new receive byte from
the mouse. Upon completion of a byte transfer (normal or
otherwise) by mouse_int, the PS/2 bus is inhibited (by holding

Table 4. USB Keyboard Data Report Format

Byte b7 b6 b5 b4 b3 b2 b1 b0

0
Modifiers

Right
GUI

Right
Alt

Right
Shift

Right
Ctrl

Left
GUI

Left
Alt

Left
Shift

Left
Ctrl

1 Reserved

2 Key 1 scan code

3 key 2 scan code

4 Key 3 scan code

5 Key 4 scan code

6 Key 5 scan code

7 Key 6 scan code

Table 5. USB Keyboard Set_Report Data Format for LED

Byte b7 b6 b5 b4 b3 b2 b1 b0

0
LED
Report

Con-
stant

Con-
stant

Con-
stant

Kana Com-
pose

Scroll
Lock

Caps
Lock

Num
Lock

Table 6. USB Mouse Data Report Format

Byte b7 b6 b5 b4 b3 b2 b1 b0

0 Padding Left
Alt

Left
Shift

Left
Button

1 Horizontal (X) Displacement

2 Vertical (Y) Displacement

Designing a USB Keyboard and PS/2 Mouse Combination Device

8

the clock line LOW) to allow the high-level state machine,
mouse_machine, to act.

The high-level state machine (mouse_machine) is, in turn,
driven by periodic calls from the application (the keyboard and
PS/2 mouse firmware in this case). Whenever we initiate a
mouse command, mouse_machine must be called regularly
from the application in order to process its state sequences.
Making these regular calls to mouse_machine is referred to
as “operating” the mouse_machine. Every call to
mouse_machine returns an idle/busy indication in the micro-
controller’s C-bit (carry). It returns C-bit = 0 if it is idle (i.e., no
mouse commands are currently in process), and C-bit = 1 if
a mouse command is currently being processed. No new
mouse command should be initiated by the application unless
mouse_machine is idle. Further, mouse_machine can only be
made busy by a command initiated by the application or a
power-up reset.

A sample code in Figure 8 shows how to initiate a mouse
command and “operate” mouse_machine. Call to mouse_poll
initiates the Read Data command to the mouse, and sets the
mouse_machine to the corresponding state. The subsequent
loop calls mouse_machine to sequence through the states
until the C-bit = 0, indicating the state machine is done and
idle.

PS/2 Support Subroutines

A number of support subroutines are provided to facilitate the
operation of the PS/2 mouse. The main firmware code calls
these subroutines to initialize, set operation mode and read
data from the PS/2 mouse. Their descriptions and usages are
as follows:

• ps2_init : this subroutine initializes the PS/2 mouse port. It
must be called from the main code within 500 ms of pow-
er-up, before the PS/2 mouse starts transmitting. Upon ap-
plication of power and completion of its self-diagnostics,
the mouse will automatically transmit a two-byte initializa-
tion pattern (0xAA and 0x00). Regular calls to
mouse_machine must be made after the call to ps2_init
until it returns idle, indicating the transmission of the initial-
ization pattern is complete. The receipt of the pattern rec-
ognizes that the mouse is attached to the device.

• mouse_reset : this subroutine initiates a Reset command
to the mouse, causing it to execute its self-diagnostics and
return the initialization pattern. After a call to mouse_reset,
mouse_machine must be operated until it returns idle. In
this instance, the returned data from a properly functioning
mouse will be a three-byte string (0xFA, 0xAA, and 0x00).
The first byte is the ACK byte to the Reset command, and
the next two bytes are the initialization pattern. Note that
the initialization pattern will only be transmitted automati-
cally by the mouse at power-up. Therefore, if the USB mi-
crocontroller gets reset by some reason, it is recommended

that mouse_reset be called to duplicate the reset/initializa-
tion sequence, in order to make sure that the firmware
recognizes the mouse is attached.

• ps2_status(): this subroutine can be called once
mouse_machine goes idle after the reset/initialization se-
quence to determine if a mouse is attached. It returns “0’
in the accumulator (register A) if no mouse is attached;
otherwise, “1” is returned.

• mouse_init : Once the mouse has gone through the re-
set/initialization phase and is detected as a result,
mouse_init must be invoked by the main code to prepare
the mouse for data polling. This is done by sending the Set
Remote Mode and Enable commands to the mouse.
Mouse_init operates the mouse_machine through the
command sending transactions, and only returns when the
mouse is properly configured. Mouse_init is also used to
reinitialize the mouse upon leaving the suspend mode.
Suspend/resume and remote wakeup issues will be dis-
cussed in the next section.

• mouse_poll : Upon successful completion of mouse_init,
data may be polled from the mouse by calling the
mouse_poll subroutine. Note that mouse_poll merely ini-
tiates the transaction, which is then driven to completion
by operating mouse_machine until it returns idle. When the
transaction is completed, the 3-byte PS/2 mouse data re-
port will be available in RAM area at address
mouse_packetV.

• mouse_suspend : this subroutine is called before the mi-
crocontroller enters suspend state. It initiates a Set Stream
Mode command and operates mouse_machine until the
transaction is complete.

Keyboard and Mouse Firmware Integration

Main Loop

The main loop of the firmware (Figure 9) runs two tasks con-
tinuously: ScanTask and MouseTask. The ScanTask is the
same keyboard task in the keyboard-only firmware. It scans
the keyboard scan matrix to determine any key status
change, loads the keyboard report to endpoint 1 FIFO and

MouseTask:
call mouse_poll ;send poll cmd

tw3:
call mouse_machine ;wait until done
jc tw3 ;jump back if C= 1

Figure 8. Operating mouse_machine

Main Loop

ScanTask

MouseTask

20 ms Delay

Figure 9. Main Loop

Designing a USB Keyboard and PS/2 Mouse Combination Device

9

sends it to the host system if necessary. For more details on
its operation please see the USB keyboard application note.
Similarly, the MouseTask calls mouse_poll subroutine to read
data from the PS/2 mouse, copies the mouse report from
memory buffer to endpoint 1 FIFO and transmits it to the host
system. An arbitrary delay of 20 ms was added before the
code loops back. This is to make sure that the PS/2 mouse
gets ready to respond to the next polling command.

USB Suspend/Resume and Remote Wakeup

According to the USB Specification 1.0, a device has to go
into suspend mode after 3 ms of no bus activity. The 1 ms ISR
determines when this condition occurs (by reading the Bus
Activity bit, bit 3, of the USB Status and Control Register, 1Fh)
and suspends the microcontroller. This is accomplished by
setting bit 0 (Run bit) and bit 3 (Suspend bit) of the Processor
Status and Control Register (FFh). The microcontroller will
resume operation upon one of the following three events:
USB bus activity, keyboard activity, or PS/2 mouse activity.

USB bus activity resume is carried out automatically by the
microcontroller. On the other hand, keyboard and PS/2
mouse activity during suspend are detected through GPIO
interrupts. For this reason, before entering suspend, GPIO
interrupts for the keyboard and mouse must be properly en-
abled.

For the keyboard, prior to suspending the microcontroller, the
1 ms ISR pulls down all the column port lines and enable a
falling edge interrupt on all Port 2 lines (Row port). If any key
is pressed while in suspended state, one of the row lines will
be pulled LOW and trigger a GPIO interrupt. The GPIO ISR
will then send a resume signal (force a K state where D+ is
HIGH and D– is LOW for 10 ms) to wake up the host system
(remote wake up).

The PS/2 mouse normally operates in Remote (polling)
mode, where the mouse only transmits a data report in re-
sponse to a Read Data command. When the microcontroller
enters suspend state, however, it no longer polls the mouse
for data. Thus, it is desirable to allow the mouse to be capable
of autonomously waking up the microcontroller if it has data
to transmit (mouse movement or button press). This is ac-
complished by placing the mouse in Stream mode before en-
tering suspend. In the Stream mode, the PS/2 mouse will
transmit data at regular intervals any time it has new data
available, generating GPIO interrupts and waking up the mi-
crocontroller.

Before entering suspend the main code must call function
mouse_suspend, which initiates a Set Stream Mode com-
mand and operates mouse_machine until the transaction is
complete. Then the main code will enable suspend, leaving
the Port 3 GPIO interrupt enabled. During suspend state, any
activity on the PS/2 port will cause an entry to the GPIO ISR,
which will immediately inhibit the mouse transmission. During
the wakeup sequence, the firmware must also call mouse_init
to place the mouse back to Remote mode for normal data
polling operations.

GPIO Interrupt Service Routine

In the keyboard-only firmware, the GPIO ISR was only used
to handle the keyboard resume and the sending of the remote
wakeup signal after leaving the suspend state. For the key-
board and mouse combination device, however, the GPIO in-
terrupt is also used to drive the PS/2 low-level state machine
(mouse_int) at each falling edge of the PS/2 clock signal.

Upon entering the GPIO ISR (See Figure 10), a test is done
to determine whether the firmware is running in normal oper-
ation mode or has just left suspend mode. If it is in normal
operation, the mouse_int state machine is called; otherwise,
the remote wakeup sequence begins.

1-ms Interrupt Service Routine

For the keyboard and mouse combination firmware, a few
changes were added to the keyboard-only 1 ms ISR (Figure
11):

• The keyboard scan task is no longer scheduled every 4 ms
as in the keyboard-only firmware.

• Before entering suspend state, the PS/2 mouse is placed
in Stream mode. Also, after coming out of suspend, the
mouse is set back to Remote mode.

• The PS/2 mouse time-out counter increment and check is
included. If the PS/2 is in the active state for more than 25
ms and no transfer happens, a time-out condition will occur,
resetting the PS/2 bus and setting the state machines to
idle.

PS/2 Signal Timing Issue

For reliable PS/2 bus operation, the GPIO interrupt service
provided by the main code must ensure that the latency be-
tween a falling edge on the PS/2 clock line and resultant entry
into the bit/byte level state machine (mouse_int) is no more
than 17 µs. This requirement precludes the disabling of inter-
rupts for long periods of time by other code modules, while
mouse_machine is busy. Special attention should be given to
the 1 ms ISR or other ISRs that may disable interrupt for long
periods of time.

GPIO ISR

In Suspend
Mode?

Send Remote
Wakeup Signal

Return

Call Mouse
Bit/byte Level
State Machine

mouse_int

Figure 10. GPIO Interrupt Service Routine

Bus Still
Idle?

No

Yes

Yes

No

Designing a USB Keyboard and PS/2 Combination Device

© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Conclusion
The two main enabling factors of the proliferation of the USB
devices are cost and functionality. The CY7C63413 meets
both requirements by integrating the USB SIE and multi-func-
tion I/Os with a USB optimized RISC core in a low-cost part.
In this application note, the CY7C63413 USB microcontroller
is used to implement a USB keyboard and PS/2 mouse com-
bination device. The PS/2 interface, fully implemented in firm-
ware, preserves the use of a legacy PS/2 mouse without any
additional cost.

PS/2 is a registered trademark of the International Business Machines Corp.

1 ms ISR

Clear Watchdog Timer

3 ms of
bus inactivity?

Yes

No

Save GPIO Port
Settings

Write ‘0’ to Keyboard
Column Port Bits

Enable GPIO Interrupt
on Port 2 and 3

Set the PS/2 Mouse
to Stream Mode

Go Suspend

Restore GPIO Port
Settings

Disable GPIO Interrupt
on Port 2

Restore PS/2 Mouse
to Remote Mode

past?

Yes

No
Has 12 ms

Keyboard Debounce
FIFO increment

PS/2 Mouse
Timeout Check

Return

RESUME

Figure 11. 1 ms Interrupt Service Routine

