
fax id: 3452

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
October 10, 1997 - Revised October 27, 1997

Designing a USB Keyboard with the Cypress Semiconductor
CY7C63413 USB Microcontroller

Introduction
The Universal Serial Bus (USB) is an industry standard serial
interface between a computer and its peripherals such as a
keyboard, mouse, joystick, etc. This application note de-
scribes how to design a USB keyboard using the Cypress
Semiconductor single-chip CY7C63413 USB microcontroller.
The document starts with the basic operations of a PS/2 key-
board followed by an introduction to the CY7C63413 USB
controller. A schematic of the USB keyboard and its connec-
tion details can be found in the Hardware Implementation
Section.

The software section of this application note describes the
architecture of the firmware required to implement the key-
board function. Several flowcharts are included to assist in
the explanation. The source code of the demonstration key-
board firmware is available with the Cypress CY3651 Devel-
opment Kit. Please contact your local Cypress Sales Office
for details.

This application note assumes that the reader is familiar with
the CY7C63413 USB controller and the Universal Serial Bus.
The CY7C63413 data sheet is available from the Cypress
web site at http://www.cypress.com. USB documentation can
be found at the USB Implementers Forum web site at
http://www.usb.org/.

PS/2 Keyboard Basics
Key Switches and Scan Matrix

A PS/2 keyboard typically has between 101 and 104 keys that
are uniquely positioned in a scan matrix. The scan matrix
consists of M rows and N columns, all of which are electrically
isolated from each other. On average, the number of rows (M)
is no greater than 8, and the number of columns (N) is no
greater than 20. Each key sits over two isolated contacts of
its corresponding row and column in the scan matrix. When
a key is pressed, the two contacts are shorted together, and
the row and column of the key are electrically connected (Fig-
ure 1).

Figure 1. Key Switch

PS/2 Controller

The PS/2 keyboard contains an embedded controller that per-
forms a variety of tasks, all of which help to cut down on the
overall system overhead. The essential task of the PS/2 con-
troller is to monitor the keys and report to the main computer
whenever a key is pressed or released. The controller writes
a scan pattern out to the column lines consisting of all 1s and
one 0 which is shifted through each column. The result is then
read at the row lines. If a 0 is propagated to a row line, then
the key at the intersection of that column and row has been
pressed. See Figure 2 and Figure 3.

Figure 2. Scan Results For No Key Press

Figure 3. Scan Results for Key 1, 1 Pressed

Key i, j

Row i Column j

Row 0

Row 1

Row 2

Row 3

C
ol

u
m

n
0

C
ol

u
m

n
1

C
ol

u
m

n
2

C
ol

u
m

n
3

Pattern 0

Pattern 1

Pattern 2

Pattern 3

0 1

0

0

0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

R
e

su
lt

0

R
es

u
lt

1

R
es

u
lt

2

R
e

su
lt

3

Row 0

Row 1

Row 2

Row 3

C
ol

um
n

0

C
ol

um
n

1

C
ol

um
n

2

C
ol

um
n

3

Pattern 0

Pattern 1

Pattern 2

Pattern 3

0 1

0

0

0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

R
es

ul
t 0

R
es

ul
t 1

R
es

u
lt

2

R
e

su
lt

3

Designing a USB Keyboard

2

PS/2 Cable

The PS/2 keyboard is connected to the main computer
through a shielded PS/2 cable that usually contains 6 wires
carrying 4 signals: Vcc, GND, Clock, and Data. The remaining
2 wires are unused (one of them is sometimes tied to chassis
ground.)

Introduction to CY7C63413
The CY7C63413 is a high performance 8-bit RISC microcon-
troller with an integrated USB Serial Interface Engine (SIE).
The architecture implements 37 commands that are opti-
mized for USB applications. The CY7C63413 has a built-in
clock oscillator and timers, as well as general purpose I/O
lines that can be configured as resistive with internal pull-ups,
open-drain outputs, or traditional CMOS outputs. High perfor-
mance, low-cost human-interface type computer peripherals
such as a keypad or keyboard can be implemented with min-
imum external components and firmware effort.

Clock Circuit

The CY7C63413 has a built-in clock oscillator and PLL-based
frequency doubler. This circuit allows a cost effective 6 MHz
ceramic resonator to be used externally while the on-chip
RISC core runs at 12 MHz.

USB Serial Interface Engine (SIE)

The operation of the SIE is totally transparent to the user. In
receive mode, USB packet decode and data transfer to the
endpoint FIFO are automatically done by the SIE. The SIE
then generates an interrupt to invoke the service routine after
a packet is unpacked.

In the transmit mode, data transfer from the endpoint and the
assembly of the USB packet are handled automatically by the
SIE.

General Purpose I/O

The CY7C63413 has 32 general purpose I/O lines divided
into 4 ports: Port 0 through Port 3. One such I/O circuit is
shown in Figure 4. Each port (8 bits) can be configured as
resistive with internal pull-ups (7 KΩ), open drain outputs
(high impedance inputs), or traditional CMOS outputs.The
port configuration is determined according to Table 1 below.

Ports 0 to 2 offer low current drive with a typical current sink
capability of 7 mA. Port 3 offers higher current drive, with a
typical current sink of 12 mA which can be used to drive LEDs.

Each General Purpose I/O (GPIO) is capable of generating
an interrupt to the RISC core. Interrupt polarity is selectable
on a per port basis using the GPIO Configuration Register
(see Table 1 above.) Selecting a negative polarity (“-”) will
cause falling edges to trigger an interrupt, while a positive
polarity (“+”) selects rising edges as triggers. The interrupt
triggered by a GPIO line is individually enabled by a dedicated
bit in the Interrupt Enable Register. All GPIO interrupts are
further masked by the Global GPIO Interrupt Enable Bit in the
Global Interrupt Enable Register.

The GPIO Configuration Register is located at I/O address
0x08. The Data Registers are located at I/O addresses 0x00
to 0x03 for Port 0 to Port 3 respectively.

Power-up Mode

The CY7C63413 offers 2 modes of operation after a pow-
er-on-reset (POR) event: suspend-on-reset (typical for a USB
application) and run-on-reset (typical for a PS/2 application).
The suspend-on-reset mode is selected by attaching a pull-up
resistor (100K to 470K Ω) to Vcc on Bit 7 of GPIO Port 3. The
run-on-reset mode is selected by attaching a pull-down resis-
tor (0 to 470K Ω) to ground on Bit 7 of GPIO Port 3. See Figure
5 and Figure 6.

Table 1. GPIO Configuration

Port
Configuration

Bits
Pin

Interrupt Bit Driver Mode
Interrupt
Polarity

11 X Resistive -

10 0 CMOS
Output

disabled

10 1 CMOS Input disabled

01 X Open Drain -

00 X Open Drain +

Figure 4. One General Purpose I/O Line

GPIO
Pin

VCC

7 KΩ

ESD

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable C

o
nt

ro
l

C
o

nt
ro

l

to Interrupt
Controller

Q1

Q2

Q3

Internal
Buffer

Designing a USB Keyboard

3

Figure 5. Suspend-On-Reset Mode

Figure 6. Run-On-Reset Mode

Hardware Implementation
Figure 8 is the schematic for a keyboard application.

Port 2 is configured as resistive (7 Kohm pull-ups to Vcc), and
is connected to the M rows of the scan matrix (up to 8 rows
are supported). Port 0, 1, and 3 are also configured as resis-
tive, and are connected to the N columns of the scan matrix
(up to 20 columns are supported.) The 3 LEDs (Num Lock,
Caps Lock, and Scroll Lock) are connected to the lower three
bits of Port 3 as well (for high current drive.) For scan matrices
with less than 8 rows or 20 columns, the unused port bits
should be left unconnected (internally, they are pulled up).

During a scan test where no key is pressed, the row port data
bits will be high since all row lines are internally pulled up to
Vcc. When a key is pressed, setting its column port line low
will cause its row line to go low as well. See Figure 7.

Port 3, Bit 7 is pulled up to Vcc through a 470K Ω resistor (R5)
so that the microcontroller will suspend after a POR. The mi-
crocontroller will resume once it detects bus activity (i.e USB
Bus Reset).

A 6 MHz ceramic resonator is connected to the clock inputs
of the microcontroller. This component should be placed as
close to the microcontroller as possible.

Since the keyboard is a bus-powered device, the 5V Vcc and
GND come directly from the USB cable. The Vcc pin is con-
nected to the Vcc of the cable through a ramp regulating re-
sistor of 1.5 Ω (R6). This resistor, along with a 22 µF capacitor
(C2) connected between the Vcc and GND pins, provide
roughly a 30 µs power ramp time. Vcc is also bypassed for
high frequency noise by a 0.1 µF capacitor (C1).

According to the USB specification, the USB D– line of a
low-speed device (1.5 Mbps) should be tied to a voltage
source between 3.0V and 3.6V with a 1.5 KΩ pull-up termina-
tor. The CY7C63413 eliminates the need for a 3.3V regulator
by specifying a 7.5 KΩ resistor (R1) connected between the
USB D– line and the nominal 5V Vcc.

Figure 7. Row/Column Port Configuration

V C C

Port 3, Bit 7

Rpullup
100K to 470K OH M100K to 470K Ω

Port 3, Bit 7

Rp ulldown
0 to 470K OHM0 to 470K Ω

V C C V C C

Row i

Row port l ine Column port l in
Column j

Designing a USB Keyboard

4

Figure 8. Hardware Implementation

Designing a USB Keyboard

5

Firmware Implementation
USB Interface

All USB Human Interface Device (HID) class applications
such as a keyboard, follow the same USB start-up procedure.
The procedure is as follows (see Figure 9.)

Device Plug-in (Power On Reset)

The USB device is powered when it is connected to the bus.
The pull-up resistor on D– notifies the hub that a low-speed
(1.5 Mbps) device has just been connected. Program execu-
tion begins at address 0 (see Figure 10).

Figure 10. Power On Reset

Bus Reset

The host recognizes the presence of a new USB device and
resets it (see Figure 11).

Enumeration

The host sends a SETUP packet followed by IN packets to
read the device description from default address 0. When the
description is received, the host assigns a new USB address
to the device. The device begins responding to communica-
tion with the newly assigned address. The host then asks for
the device descriptor, configuration descriptor and HID report
descriptor. The descriptors hold the information about the de-
vice. They will be discussed in detail below. Using the infor-
mation returned from the device, the host now knows the
number of data endpoints supported by the device (in a USB
keyboard, there is only one data endpoint). The host will issue
a Set Configuration with a value of 1. At this point, the process
of enumeration is completed. See Figures 12, 13, and 14.

Figure 9. USB Start-Up Procedure

Bus Reset

Enumeration

Data Acquisition/
Transfer

Device Plug-in
(Power On Reset)

Reset

Suspend until Bus Reset

Perform Initialization
Enable Bus Reset Interrupt

Wait for Enumeration

Execute main loop

Figure 11. Bus Reset ISR

Figure 12. Endpoint 0 ISR

Bus Reset

• Enable device address 0

• Enable 1ms Timer Interrupt

• Enable End Point 0 to respond to
SETUP packets

Return

• Responds to
SETUP packet
according to the
parsing structure

N

Y

End Point 0

received a
SETUP packet

return

Designing a USB Keyboard

6

Data Acquisition/Transfer

The firmware periodically writes scan patterns to the scan
matrix columns, and reads the row result to determine which
keys are pressed. The scan codes of the keys pressed are
sent to the host using endpoint 1 (see Figure 15). When the
host issues IN packets to retrieve data from the device, the
device returns eight bytes of data. These eight bytes hold the
keyboard control data (see Figure 16). Usage codes for each

key can be found in Appendix A.3 of the Device Class Defini-
tion for Human Interface Devices (HID). When one of the LED
buttons (i.e. Num Lock, Caps Lock, Scroll Lock) are pressed
or released, the host issues a SETUP packet with a
Set_Report request through the control pipe to End Point 0,
followed by an OUT packet with 1 Data byte indicating which
LED should be on or off (see Figure 17.)

Figure 13. USB Standard Request Parsing Structure

host to dev
dev recip

0x00

host to dev
inter recip

0x01

host to dev
endp recip

0x02

dev to host
dev recip

0x80

dev to host
inter recip

0x81

dev to host
endp recip

0x82

get status
0x00

clr feature
0x01

set feature
0x3

set addr
0x05

get desc
0x06

set desc
0x07

get config
0x08

set config
0x09

get inter
0x0A

set inter
0x0B

synch
0x0C

bmrequest type

brequest

Figure 14. USB HID Class Request Parsing Structure

host to dev
inter recip

0x21

dev to host
inter recip

0xA1

get_protocol
 0x03

bmrequest type

brequest

get_idle
0x02

get_report
0x01

set_protocol
0x0B

set_idle
0x0A

set_report
0x09

Designing a USB Keyboard

7

Figure 16. IN Data Organization for USB Keyboard

Figure 17. LED Report for USB Keyboard

The byte order and bit field positions are defined by the HID
report descriptor (discussed below), and are also consistent
with the Boot Protocol requirements for legacy systems.

USB Descriptors

As stated earlier, the USB descriptors hold information about
the device. There are several types of descriptors, which will
be discussed in detail below. All descriptors have certain
characteristics in common. Byte 0 is always the descriptor
length in bytes and Byte 1 is always the descriptor type. Dis-
cussion of these two bytes will be omitted from the following
descriptions. The rest of the descriptor structure is dependent
on the descriptor type. An example of each descriptor will be
given. Descriptor types are device, configuration, interface,
endpoint, string, report, and several different class descrip-
tors.

Device Descriptor

This is the first descriptor the host requests from the device.
It contains important information about the device. The size
of this descriptor is 18 bytes. A list follows:

• USB Specification release number in binary-coded deci-
mal (BCD) (2 bytes)

• Device class (1 byte)

• Device subclass (1 byte)

• Device protocol (1 byte)

• Max packet size for Endpoint 0 (1 byte)

• Vendor ID (2 bytes)

• Product ID (2 bytes)

• Device release number in BCD (2 bytes)

• Index of string describing Manufacturer (Optional) (1 byte)

• Index of string describing Product (Optional) (1 byte)

• Index of string containing serial number (Optional) (1 byte)

• Number of configurations for the device (1 byte)

Example of a device descriptor

Descriptor Length (18 bytes)
Descriptor Type (Device)
Complies to USB Spec Release (1.00)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
Max Packet Size for endpt 0 (8 bytes)
Vendor ID (Cypress)
Product ID (USB Keyboard)
Device Release Number (1.03)
String Describing Vendor (None)
String Describing Product (None)
String for Serial Number (None)
Possible Configurations (1)

Figure 15. Endpoint 1 Interrupt Service Routine

Byte 7 - Key 6

Byte 6 - Key 5

Byte 5 - Key 4

Byte 4 - Key 3

Byte 3 - Key 2

Byte 2 - Key 1

Byte 1 - Reserved

Bit 7 Bit 0

Right
 GUI

Right
 Alt

Right
 Shift

Right
 Ctrl

Left
GUI

Left
Alt

Left
Shift

Left
Ctrl

Byte 0-
Modifier

End Point 1

Return

Received
ACK from
last Tx

No

Clear End Point 1 FIFO
Toggle Data PID

Yes

Bit 7 Bit 0

Con-
stant

Con-
stant

Con-
stant

Kana Com-
pose

Scroll
Lock

Caps
Lock

Num
Lock

Byte 0-
LED report

Designing a USB Keyboard

8

Configuration Descriptor

The configuration descriptor is 9 bytes in length and gives the
configuration information for the device. It is possible to have
more than one configuration for each device. When the host
requests a configuration descriptor, it will continue to read
these descriptors until all configurations have been received.
A list of the structure follows:

• Total length of the data returned for this configuration (2
bytes)

• Number of interfaces for this configuration (1 byte)

• Value used to address this configuration (1 byte)

• Index of string describing this configuration (Optional) (1
byte)

• Attributes bitmap describing configuration characteristics
(1 byte)

• Maximum power the device will consume from the bus (1
byte)

Example of configuration descriptor

Descriptor Length (9 bytes)
Descriptor Type (Configuration)
Total Data Length (34 bytes)
Interfaces Supported (1)
Configuration Value (1)
String Describing this Config (None)
Config Attributes (Bus powered)
Max Bus Power Consumption (100mA)

Interface Descriptor

The interface descriptor is 9 bytes long and describes the
interface of each device. It is possible to have more than one
interface for each device. This descriptor is set up as follows:

• Number of this interface (1 byte)

• Value used to select alternate setting for this interface (1
byte)

• Number of endpoints used by this interface. If this number
is zero, only endpoint 0 is used by this interface (1 byte)

• Class code (1 byte)

• Subclass code (1 byte)

• Protocol code (1 byte)

• Index of string describing this interface (1 byte)

Example of interface descriptor

Descriptor Length (9 bytes)
Descriptor Type (Interface)
Interface Number (0)
Alternate Setting (0)
Number of Endpoints (1)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
String Describing Interface (None)

HID (Class) Descriptor

The class descriptor tells the host about the class of the de-
vice. In this case, the device falls in the human interface de-
vice (HID) class. This descriptor is 9 bytes in length and is set
up as follows:

• Class release number in BCD (2 bytes)

• Localized country code (1 byte)

• Number of HID class descriptor to follow (1 byte)

• Report descriptor type (1 byte)

• Total length of report descriptor in bytes (2 bytes)

Example of HID class descriptor

Descriptor Length (9 bytes)
Descriptor Type (HID Class)
HID Class Release Number (1.00)
Localized Country Code (USA)
Number of Descriptors (1)
Report Descriptor Type (HID)
Report Descriptor Length (63 bytes)

Endpoint Descriptor

The endpoint descriptor describes each endpoint, including
the attributes and the address of each endpoint. It is possible
to have more than one endpoint for each interface. This de-
scriptor is 7 bytes long and is set up as follows:

• Endpoint address (1 byte)

• Endpoint attributes. Describes transfer type (1 byte)

• Maximum packet size this endpoint is capable of transfer-
ring (2 bytes)

• Time interval at which this endpoint will be polled for data
(1 byte)

Example of endpoint descriptor

Descriptor Length (7 bytes)
Descriptor Type (Endpoint)
Endpoint Address (IN, Endpoint 1)
Attributes (Interrupt)
Maximum Packet Size (8 bytes)
Polling Interval (10 ms)

Report Descriptor

This is the most complicated descriptor in USB. There is no
set structure. It is more like a computer language that de-
scribes the format of the device’s data in detail. This descrip-
tor is used to define the structure of the data returned to the
host as well as to tell the host what to do with that data. An
example of a report descriptor can be found below.

A report descriptor must contain the following items: Input (or
Output or Feature), Usage, Usage Page, Logical Minimum,
Logical Maximum, Report size, and Report Count. These are
all necessary to describe the device’s data.

Example of report descriptor

Usage Page (Generic Desktop)
Usage (Keyboard)
Collection (Application)

Usage Page(key codes)
Usage Minimum (224)
Usage Maximum (231)
Logical Minimum (0)
Logical Maximum (1)
Report Size (1)
Report Count (8) ; modifier byte
Input (Data, Variable, Absolute)

Report Count (1)
Report Size (8)
Input (Constant) ; reserved byte

Designing a USB Keyboard

9

Report Count (5)
Report Size (1)
Usage Page (LEDs)
Usage Minimum (1)
Usage Maximum (5)
Output (Data, Variable,
Absolute); LED report
Report Count (1)
Report Size (3)
Output (Constant) ;padding

Report Count (6)
Report Size (8)
Logical Minimum (0)
Logical Maximum (101)
Usage Page (key codes)
Usage Minimum (0)
Usage Maximum (101)
Input (Data, Array) ;key array(6)

End Collection

Input items are used to tell the host what type of data will be
returned as input to the host for interpretation. These items
describe attributes such as data vs. constant, variable vs. ar-
ray, absolute vs. relative, etc.

Usages are the part of the descriptor that defines what should
be done with the data that is returned to the host. From the
example descriptor, Usage (Keyboard) tells the host that this
is a keyboard device. There is also another kind of Usage tag
found in the example called a Usage Page. The reason for the
Usage Page is that it is necessary to allow for more than 256
possible Usage tags. Usage Page tags are used as a second
byte which allows for up to 65536 Usages.

Logical Minimum and Logical Maximum are used to bound
the values that a device will return. For example, a keyboard
that will return the values 0 to 101 for the scan code of each
key press will have a Logical Minimum (0) and Logical Maxi-
mum (101). These are different from Physical Minimum and
Physical Maximum. Physical boundaries give some meaning
to the Logical boundaries. For example, a thermometer may
have Logical boundaries of 0 to 999, but the Physical bound-
aries may be 32 to 212. In other words, the boundaries on the
thermometer are 32 to 212 degrees Fahrenheit, but there are
one thousand steps defined between the boundaries.

Report Size and Report Count define the structures that the
data will be transferred in. Report Size gives the size of the
structure in bits. Report Count defines how many structures
will be used. In the example descriptor above, the lines Re-
port Size (8) and Report Count (6) define a 6 byte key array
for a keyboard.

Collection items are used to show a relationship between two
or more sets of data. For example, a minimal keyboard can
be described as a collection of four data items (Modifier byte,
Reserved byte, LED report, and Key Array). End Collection
items simply close the collection.

It is important to note that all examples given here are merely
for clarification. They are not necessarily definitive solutions.

A more detailed description of all items discussed here as
well as other descriptor issues can be found in the “Device
Class Definition for Human Interface Devices (HID)” revision
1.0 and in the “Universal Serial Bus Specification” revision

1.0, chapter 9. Both of these documents can be found on the
USB world wide web site at http://www.usb.org/.

Functionality

Main Loop

The main loop of the firmware (Figure 20) waits for the key-
board Scan Task to be scheduled by the 1 ms ISR (Figure 25),
and then executes it. Reports are sent to the host via End
Point 1 anytime a key is pressed or released. The host side
software will repeat the key press until the release of the key
so that the device does not require a continuous report when
no key status changes have occurred.

Scan Task

The Scan Task (Figure 21) determines if there were any key
status changes from the previous scan (i.e. key presses or
releases) and calls the KeyChanged routine (Figure 22) for
each column of the scan matrix that had changes in any of
the row positions. The KeyChanged routine calls the
FoundKey routine (Figure 24) for each row that there was
change in status. The FoundKey routine calculates an index
based upon the row and column of the key, does a lookup in
a KeyCodeTable for its usage (scan) code, and stores it in the
End Point 1 FIFO. After all columns have been scanned, the
Scan Task calls the SendKeys routine (Figure 23) if a report
is required to be sent to the host.

Debounce

The mechanical switch properties of the key switches cause
them to bounce after a key press. These bounces may be
mistaken for actual key events. See Figure 18.

Figure 18. Key Switch Bounce

To solve this problem, all keys that are pressed have their
code stored in a Debounce FIFO at the location pointed to by
the Debounce Pointer (the reference firmware uses a 4-ele-
ment FIFO). The 1 ms ISR updates and clears the current
position in the Debounce FIFO every 12 ms. Every key that
has a status change (i.e. pressed or released) is searched for
in the Debounce FIFO. If the key is found, the status change
is ignored. In other words, any status change for 12*4= 48 ms
after a key is pressed is considered to be caused by switch
bounces, and should be disregarded. Different keyboards will
have varying key switch sensitivity, and the length of the De-
bounce FIFO may vary. The firmware uses the constant
DEB_HI_ADDR to set the length of the FIFO.

Time

Row i Signal

Keyi, j pressed Keyi, j released

Switch bounces

Designing a USB Keyboard

10

Phantom Keys

A phantom fourth key press (D) will be detected in a scan
matrix if two keys (A and B) in the same column are pressed,
along with a third key (C) pressed in the same row as A or B
(see Figure 19). If this situation is detected, all 6 key array
positions in the End Point 1 FIFO (bytes 2–7) will be loaded
with usage code 01h to report a Rollover error to the host.
This tells the host that the firmware was unable to accurately
determine which key presses had occurred.

Figure 19. Phantom Key Situation

N-Key Rollover

In the case where multiple keys are pressed and held down,
only the last key pressed should be repeated. To accomplish
this, the last key press is stored in the LastTx buffer and is
sent again in a separate report to the host whenever a multi-
ple key report is sent. Once the same key is released, a report
notifying it of the release is sent to the host (all 6 key array
positions are filled with 0’s).

Suspend/Resume/Remote Wakeup

According to the USB Specification 1.0, a device has to go
into suspend mode after 3 ms of no bus activity. The 1 ms ISR
determines when this condition occurs (by reading the Bus
Activity bit, bit 3, of the USB Status and Control Register, 1Fh)
and suspends the microcontroller. This is accomplished by
setting bit 0 (the Run bit) and bit 3 (Suspend bit) of the Pro-
cessor Status and Control Register (FFh). The microcontrol-
ler will resume operation if a GPIO interrupt occurs or bus
activity resumes.

Prior to suspending the microcontroller, the 1 ms ISR pulls
down all the column port lines and enables a falling edge
interrupt on all Port 2 lines (Row port). If any key is pressed
while in the suspended state, one of the row lines will be
pulled low and trigger a GPIO interrupt. The GPIO ISR (Fig-
ure 26) will send a resume signal (force a K state where D+
is high and D- is low for 10ms) to wake up the host (remote
wake up).

Key Code Table

The Key Code Table found at the end of the keyboard firm-
ware must be filled in uniquely for each keyboard. Each key-
board has unique, proprietary key mappings to its scan ma-
trix. Each location in the Key Code Table corresponds to a
column/row intersection that must contain the usage code for

the key in that position of the scan matrix. Unused locations
should be filled with 00H.

The reference Key Code Table contains a unique location
number in each column/row intersection, beginning with 01H
for Column 0, Row 0 up to A0H for Column 19, Row 7. These
location codes are useful for determining the mappings of
keys to the scan matrix if appropriate documentation is not
available. This is possible through the use of a USB bus ana-
lyzer tool to record DATA packets sent to the host with each
key press. The contents of the recorded DATA packet point to
exactly one location in the reference Key Code Table. The
location number can then be replaced with the actual usage
code of the key pressed. Usage codes for the USB keyboard
can be found in Appendix A.3 of revision 1.0 of the Device
Class Definition for Human Interface Devices (HID).

Figure 20. Main Loop

Row 0

Row 1

Row 2

Row 3

C
ol

u
m

n
0

C
ol

u
m

n
1

C
ol

u
m

n
2

C
ol

u
m

n
3

Pattern 0

Pattern 1

Pattern 2

Pattern 3

0 1

0

0

0

1 1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

0

1

0

R
e

su
lt

0

R
es

u
lt

1

R
e

su
lt

2

R
es

ul
t 3

A

B

C

D (phantom)

Main Loop

Wait for Task
to be SCAN_TASK

Perform
Scan Task

Designing a USB Keyboard

11

Figure 21. Scan Task

Figure 22. KeyChanged Routine

Figure 23. SendKeys Routine

Scan Task

Read row bits
(Port 2)

Column = 0

Write scan pattern to
test Column
(Ports 0, 1, 3)

Compare row bits with
KeySwitchImage[Column]

Changes
found?

Increment Column

Column < 20?

Call KeyChanged
routine

Yes

Store row bits in
KeySwitchImage[Column]

No

TxRequired?

Call SendKeys
routine

Yes

No

Yes

Set Task to NO_TASK

Done

No

Set TxRequired
flag to False

(this may be called
again to send the
LastTx if multiple
keys were sent in
one packet).

KeyChanged

Row = 0

Row status
changed?

Call FoundKey
routine

Increment Row

Yes

No

Row < 8?Yes

Return

No

SendKeys

Enable response to IN packets
with 8 data bytes

Wait for ACK

Respond to IN packets
with NAK

Return

Designing a USB Keyboard

12

Figure 24. FoundKey Routine

Figure 25. 1 ms ISR

FoundKey

Compare row bit with
KeySwitchImage[Column][Row]

Key =
KeyCodeTable[Column][Row]

LastTx = Key

Phantom
key situation?

Pressed

EP1 FIFO
full?

Key is a
modifier?

No

No

Add Key to EP1 FIFO

Set TxRequired flag
to True

No

Return

Key status

Key is a
modifier?

Set Modifier

Set TxRequired

Byte in FIFO

Yes

Fill EP1 FIFO with
01H (Rollover Error)

Yes

1

1Yes

Released

flag to True

Yes Key ==
LastTx?

No

Debounce_FIFO[Debounce_Pointer]=
Key

Key in
Debounce
FIFO?

No

Set TxRequired
flag to True

Yes

Yes

No

1 ms ISR

Clear Watchdog Timer

3 ms of
bus inactivity?

Suspend until bus
activity resumes

Has 4 ms
past? Set Task to SCAN_TASK

Has 12 ms
past?

Increment
Debounce_Pointer

Return

Yes

No

Yes

No

Yes

No

Save GPIO Port
settings. Write ‘0’ to

Enable GPIO interrupts
(falling edge) on Port 2

Debounce_FIFO[Debounce_Pointer] =
Illegal matrix index

Column port bits.

Disable GPIO interrupts.
Restore port settings.

Designing a USB Keyboard

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 26. GPIO ISR

Conclusion
The two main enabling factors of the proliferation of the USB
devices are cost and functionality. The CY7C63413 meets
both requirements by integrating the USB SIE and multi-func-
tion I/Os with a USB optimized RISC core for a low price per
part.

GPIO ISR

Send Remote Wakeup signal

Return

Bus is still
idle?

No

Yes

